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Abstract

Active appearance model efficiently aligns objects which
are previously modelized in images. We use it for Hu-
man Machine Interface (face gesture analysis, lips reading)
to modelize mouth on embedded systems (mobiles phones,
game console). However those models are not only high
memory and time consumer but also not robust in the case
of object with high deformations (different pose of a face or
different expressions of mouth): this is the manifold prob-
lem [3]. We propose a new optimization method based on
Nelder Mead Simplex [12] initialized by Gaussian Mixture
(GM). The GM is applied to the learning data in the re-
duced space. This method reduces memory requirement
and improves the efficiency of AAM when we modelize
high deformable object at the same time. The test, car-
ried out on France Telecom and BioID data bases, shows
that our proposition to align mouth outperformed the classi-
cal optimization when applied to mouth alignment and give
the same results as classical optimization on common face
alignment.

1. Introduction

In Human Machine Interface (HMI) it is necessary to
recognize objects (faces, hands, mouths ) and analyse them
to identify motions and gestures. All of these applications
first need to align objects to be analysed. When it is imple-
mented on an embedded system this alignment operation
must not be time and memory consuming. We use Active
Appearance Model to align faces and mouths in embedded
HMI (Mobile phones, and game console). AAM was pro-
posed by Edward, Cootes and Taylor [8] in 1998. They

allow synthesizing an object with its shape and texture. Ap-
pearance variation is collected in a consistent manner, by
establishing a warp function and a Regression Matrix (RM)
between the variation of model parameters and modeliza-
tion error. RM is used to adjust the model to an object. This
optimization has 2 problems:
Required memory: memory space required to save RM and
the mean model makes it difficult to implement on embed-
ded systems.
Manifolds: object shape and texture can vary with non lin-
ear variation. For example mouth presenting different ex-
pressions [3] or cars in different pose. Learning exam-
ples then define distinct regions (fig.1). During learning
phase, RM construction is done for each image based on
the real c vector. The RM initialization is the mean model
(c(1), c(2) = �0) can’t reach any space expression with a lin-
ear relation (fig.1). This is why the RM can not be used in
manifolds problem.

We propose a new optimization method based on Nelder
Mead Simplex initialized by Gaussian Mixture (GM). The
gaussian mixture is optimized by Expectation Maximiza-
tion algorithm. After a brief AAM presentation and the
method proposed by community to improve its memory
consumption and avoid manifold problem (section 2), in
section 3 we’ll present our optimization method, then test
results are illustrated in section 4. In section 5 we’ll con-
clude and present our future works.

2. Background

2.1. Active Appearance Model

AAM uses PCA to encode both shape and texture vari-
ation of training data base. The shape of an object can be



Figure 1. Representation of different face ori-
entation. The space formed by first and sec-
ond reduced space variable shows the dis-
tinct regions.

represented by vector s and the texture (gray level) by vec-
tor g. We apply one PCA to the shape and another PCA to
the texture in order create the model, given by:

si = s̄ + Φs ∗ bs

gi = ḡ + Φg ∗ bg
(1)

Where si and gi are shape and texture, s̄ and ḡ are mean
shape and mean texture. Φs and Φg are vectors represent-
ing variations of orthogonal modes of shape and texture re-
spectively. bs and bg are vectors representing parameters of
shape and texture. By applying a third PCA to the vector

b

[
bs

bg

]
we obtain:

b = Φ ∗ c (2)

φ is matrix of dc eigenvectors obtained by PCA. c is appear-
ance parameters vector. The modifications of c parameters
change both shape and texture of the object. Each object is
defined by the appearance vector c and pose vector t:

t =
[

tx ty θ S
]T

(3)

Where tx and ty are x and y axis translation, θ is angle of
orientation and S is Scale.
c is appearance parameters vector. AAM learn the linear re-
gression models which give us the predicted modifications
of model parameters δc and δt:

δc = RcG
δt = RtG

(4)

Rc and Rt are the appearance and pose regression matrices
respectively. The model search is driven by the residual im-
age G: the difference between the search image and model
reconstruction.

2.2. Related works

Many methods were developed to overcome the weak-
ness presented by AAM method. Memory space problem
was dealt with replacing Principal Component Analysis
PCA of AAM for generating texture model by Wavelet
[11] to reduce the size of texture RM. In [13] Simulated
Annealing was used but proved to be time consuming.
Direct Appearance Model [10] is derived from the classical
AAM by eliminating the joint PCA on texture (Eq.2) and
shape. It uses the texture information directly for the
prediction of the shape: the estimation of position and
appearance. It comes from the fact that we could extract the
shape directly from texture. The main difference between
the DAM and the AAM is in the third PCA. The dimension
of the new space representation is four times less than
the dimension given by PCA in classical AAM and the
prediction is more stable. The regression in the DAM then
requires less memory than the regression used in the AAM.
In [10] it is shown that the size of the matrix of regression
is 11, 83 lower than that of AAM.
The method of Active Wavelet Networks [11] uses the
wavelets as alternative to the PCA in order to reduce the
dimension of space. It uses a Gabor Wavelet network
[11] to model the variations of the texture of the training
base. The given weights are of the shape to preserve
the maximum information contained in image for a fixed
wavelet number. The DAM and AWN methods make it
possible to reduce the required memory to store RM.

Manifolds problem may be treated with the DAM and
AWN by executing several AAM (each AAM represent-
ing one expressions) but the memory and time consump-
tion must be multiplied by the expressions number. The
gaussian mixture [15] is used to make the difference be-
tween the different expression classes of the same object
(manifolds) modelized by AAM [3]. The mixture of the al-
gorithm is applied on the real learning data images. Each
expression class is represented by a gaussian and defines a
model with a specific RM. During the search phase, a num-
ber of AAM equals the number of expressions applied. The
retained solution generates the minimal error between the
generated model and the input image. The problem of man-
ifolds was dealt in many approaches like the extension num-
ber of models in supervised [5] [6] and unsupervised way
[2], and specification of the learning data base in hierarchi-
cal approach [17] [16] and identity specification approach
[9] [1].



The Nelder and Mead simplex was used in face feature
detection [7]. Model of each landmark (17 landmarks for
face) is created and the simplex optimize the placement of
landmarks by using score function given by each model.
The features models are in low dimension compared by
model of whole face. [7] doesn’t optimize AAM parame-
ters but placement of landmarks. The simplex does not use
prior knowledge, which makes them efficient in generaliza-
tion and they don’t need too much memory space as well.

In the following section, we propose a method to remove
the space allocated to store these matrices and to reduce
time execution.

3. AAM- GM simplex optimization

The simplex does not use prior knowledge, which makes
them efficient in generalization and they don’t need too
much memory space as well. We represent in fig.1 the learn-
ing data of different poses face in the plan of the two first
parameters given by the PCA (2). The face poses which
present a manifold problem remain separated even repre-
sented in reduced space. We’ll exploit this to initialize the
simplex with solutions representing different classes. We
propose then to initialize the simplex using a gaussian mix-
ture. We pick randomly the initial solutions in each gaus-
sian of the mixture. The use of the GM will accelerate and
improve the simplex algorithm.

3.1 Nelder Mead simplex

Simplex of Nelder Mead [12] makes possible to find the
minimum of function of several variables in an iterative
way. We initialize the algorithm with n + 1 solution, where
n is the number of parameters to be optimized. Thus the so-
lution where the function is highest (= Emax) is rejected to
be replaced by another solution which will be calculated ac-
cording to the precedents. The efficiency of Simplex depend
on the manner in which it was initialized. The operators of
search for solutions minimizing the objective function are
as follows:
Reflection: we test the point which is in the opposite direc-
tion of the bad solution.
Expansion: we prolong research beyond the point of reflec-
tion by testing the solution.
Contraction: if the previous two operators of search fail
then we minimize tests points close to share and other of
the current solution.
Shrinkage: if all the previous solutions do not minimize E
we narrow down the triangle by changing these tops, and
tests the preceding disturbances.

3.2 GM Simplex optimization

We propose to optimize AAM using Simplex initialized
by GM. The function to be optimized is the error of pixels:

E =
M∑
i=1

(g mod
i − gimage

i )2 (5)

Where M is the number of model pixels, g mod
i is

the intensity of the pixel i in model generated by new
solution and gimage

i is the intensity of the pixel i in the
image containing the searched object. The use of an GM
initialization makes us able to get initial solutions closer to
the research optimum. The algorithm is as follows:
Initialization: After creating the model, we get the vectors
c (Eq. 2) representing each image of the learning data
base, we look for gaussian mixture over the appearance
vectors representing the learning data in the reduced space
given by the PCA using Expectation Maximization (EM)
Algorithm. This is done off line. The weights, the mean
and the gaussian variances making the mixture enable us
to choose randomly a number of vectors (proportional to
the gaussian weights) belonging to each gaussian. These
vectors will initialize the SP.

Convergence: A model is described by:

v =
[

c
t

]
(6)

Size of v is dc + dt (dc and dt are the c (Eq. 2) and t size
(Eq. 3), the simplex must optimize dc + dt parameters to
align the model on the face. The simplex starts search from
dc + dt + 1 solutions chosen randomly in space under
constraint. So as to use the simplex algorithm in AAM
optimization, variables constraint and stopping criterion
must be defined.

Constraints: They are applied to avoid testing incor-
rect solutions that we know preliminary. These constraints
bound search space on appearance and pose variables. We
initialize the vector v (Eq. 6), representing appearance and
pose, randomly in interval corresponding to each parameter
under Cootes’s constraint:

• Appearance constraint: appearance variable c interval
is −2

√
λ and 2

√
λ [14]. Where λ is the eigenvalues

of the eigenvectors corresponding to matrix GT G, G
is the gray level difference matrix between modifying
model and real image. These constraints are verified
during algorithm execution.

• Pose constraints: AAM is robust untill 10% in scale
and translation [4]. We initialise the pose variable (x
and y axis translation, rotation and scale) in the interval
of 10% of the object real pose vector.



Stopping criterion: the algorithm will end after fixed
number of iterations (to insure maximum processing time)
or when it will converge in population. The population
convergence is obtained if difference between the error
values (Eq. 5) of the proposed solutions do not pass the
threshold SE . In the case of error normalization, done by
Stegmann in [14], the mean value of the error is stable
Emean on different images of the same object, at the
time when the alignment is correct. We propose to settle
SE = 0.1 × Emean.

Memory consumption: Simplex neither need additional
required memory space necessary to store the model nor
information on the directions to a priori minimize the error
E. The size of the two matrices (of appearance Rc and of
pose Rt) is equal to M × (dc + dt) Bytes, M being the
number of pixels contained in texture of the model. For our
test with images 64×64pixels, we have dc = 8 and dt = 4,
then the size of the regression matrices (Eq. 4) is 98KB.
The mean model size is 8KB. The memory require for the
AAM is ≈ 106KB. In the case of the simplex we don’t
need RM, therefore, the memory used is 8KB. Memory
space required by the simplex is lower than that used in [11]
which memorizes the wavelet coefficients in addition to the
model and also lower than that needed in [10] which stores
the matrix Rc.

Figure 2. Deye distance and the 4 points used
to calculate the error marking.

4 Experiences

4.1 Error marking

To evaluate the performance of our proposed optimiza-
tion, we do two test:

• Mouth alignment under manifold problem: the test
was realized on 116 mouth images from france Tele-
com data base (FT) which do not belong to the train-
ing data base. The training data base is made up of 20
images belonging to the FT data base.

• Face alignment in generalization: the test was real-
ized on 1521 face images belonging to different per-
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Figure 3. Results obtained on 116 images
from FT data base

sons from BioID (Biometric Identity Data Base) data
base. The training data base is made up of 15 images
belonging to the M2VTS (Multi Modal Verification for
Teleservices and Security applications) data base.

To qualify the convergence of the AAM we will define
an error marking. This error fi(i = 1, 2, 3, 4) is calculated
for each part of the face i = left and right eye, nose, lips
such as:

fi = (pfind
gi − preal

gi )/Deye

e = max(fi)

with pfind
gi = 1

Qi

Qi∑
r=1

pfind
ir

(7)

Where e is the marking error, preal
ir are the coordinates

of the ground truth of the marking points of the face part
i, pfind

ir the coordinates of the marking points of the face
part i found by AAM and Qi is the number of landmarks of
the i face part. The algorithm converges when the 4 errors
are lower than convergence threshold. The threshold was
calculated according to the distance between the eyes Deye.
In the case of mouth alignment we take into acount only the
mouth part.

4.2 Results

We test the efficiency of our method comparing to the
RM and SP randomly initialized (SPR) in the PCA space.
In order to make the three methods comparable, we fix the
iterations’s number (error calculations and warping) to the
RM necessary number of iterations to converge. We fix this
number to 837 error calculation. The fig.4 shows overlay
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Figure 4. Results obtained on 1521 images
from BioID data base

of cumulative distribution of maximum point to point er-
ror measure curves of the three methods. We are interested
in the interval

[
0.15 0.25

]
, under 0.15 the error can be

generated by the manual annotation and up of 0.25 we con-
sider that the algorithm diverges. The fig.3 shows robust-
ness of SPGM comparing to the RM and SPR in mouth
modelization. By fixing the threshold to 0.2, which presents
a threshold of a good precision, the SPGM method present
convergence rate of 71% whereas the convergence rate is
32% for the RM and 63 for the SPR. it shows that the SPGM
optimisation is very efficient comparing to SPR and RM. It
allows us to calculate the number of image where the algo-
rithm do not converge. In 116 test images, we notice that the
RM diverge in 54%, SPR have a divergence rate of 28% and
SPGM diverge in only 12% of the testing data base. The test
done on the BioID data base (fig.4) shows that the RM and
SPGM are efficient comparing to SPR but the three meth-
ods are in the same range in terms of convergence rate. This
is due to the compactness of data distribution in the case of
faces. In this case data may be represented with overlap-
ping gaussians. Even we have not a manifold problem in
the BioID data base the SPGM remains attractive. Fig.4
shows a comparison of the SPGM method and the method
used in [3], which we call 4RM, in the case of mouth align-
ment. We notice that the 4RM method is more efficient than
the SPGM method if a very good precision in the alignment
is required (between 15% and 22%); it’s due to the use of
different model (in our case 4 model), one model for each
expression. In the interval

[
0.22 0.25

]
, both methods

are equivalent. Neverthless, it must be noticed that 4RM
presents a memory consumption and time executing four
times higher than RM and SPGM and then cannot be im-

plemented in a real time application. The warping number
fixed to be comparable to RM is 837, hence the SPR and
SPGM need respectively only about 700 and 600 warping
in average to converge. This is added to the decrease of
memory space required estimated to 92% in the two cases
where we use SP optimisation.

5 Conclusion

We proposed to use Nelder Mead algorithm initialized by
gaussian mixture instead of RM to optimize AAM. Gaus-
sian Mixture gives good initialization to the simplex which
permits to reach the optimum. The test performed shows
that our optimization method present a robust results com-
paring to RM in the case of manifold problem and the
similar results in general case using only one model. The
SPGM optimization reduces the memory space required to
the AAM, which is a very important factor in the embedded
technologies, by 92%. We notice that if the learning data
base is bigger, we expect in better results. It’s justified by
the compactness and the good definition of the initializa-
tion space by having more learning examples. Our method
allowed us to overcome the manifold problem with handle
only one AAM. It permits us to get the real time executing.
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